top of page

November 6, 2011

Dr. Lorenz Studer Pioneers Novel Stem Cell Technique in Pre-Clinical Models of Parkinson's Disease

On Sunday, November 6, Lorenz Studer, MD, director of the Sloan Kettering Institute (SKI) for Stem Cell Biology, published a paper in the journal Nature on a new strategy for using embryonic stem (ES) cells to graft human dopamine neurons into pre-clinical models of Parkinsons disease (PD). Historically, ES cells have shown promise for treating PD in a Petri dish, they have not yet been effective once transplanted into a living organism. Dr. Studers new technique, however, has revealed new promise in models of PD, reflecting the potential for dopamine cells survival and function in the brain. Dr. Studer was funded by The Michael J. Fox Foundation (MJFF) in 2001 to investigate the potential of ES cells to treat PD, and was part of the team that first successfully induced human ES cells to turn into dopamine neurons in research experiments. We spoke with Dr. Studer and with Brian Fiske, PhD, the Foundations director of research programs, to gauge the impact of this recent discovery, and to discuss why the process of developing stem cell therapies is such a long and arduous one. While Dr. Studers results are promising, there is still much work to be done before stem cells can be considered a viable therapeutic option for PD.

NOTE: The medical information contained in this article is for general information purposes only. The Michael J. Fox Foundation has a policy of refraining from advocating, endorsing or promoting any drug therapy, course of treatment, or specific company or institution. It is crucial that care and treatment decisions related to Parkinsons disease and any other medical condition be made in consultation with a physician or other qualified medical professional.

MJFF: Dr. Fiske, what is cell replacement therapy and how may it one day help people with PD?

BF: Cell replacement therapy seeks to restore function in the body by replacing cells lost due to disease with new, healthy ones. In PD, this means replacing dopamine cells in the brain, the main type of cell that degenerates in the disease. Researchers hope that one day they will be able to use stem cells to successfully engineer healthy new dopamine-producing cells. These healthy cells would then be implanted into the brain, where the cells could in theory restart the brain's production of dopamine and restore normal movement.

MJFF: Historically, what challenges have stood in the way of making this happen? BF: Scientists are working on two major challenges: first, engineering the dopamine-producing cells, and second, getting these cells to function properly once they are transplanted into the brain. To date, they have had the most success generating robust dopamine neurons, in both quantity and quality, using ES cells. However, whether these engineered dopamine neurons are sufficiently 'authentic' that is, whether they express everything natural ones do is a remaining challenge. Even if seemingly authentic dopamine neurons can be generated, researchers face an enormous hurdle in coaxing these cells to grow and make the correct connections in a host brain. This involves determining where to place the cell grafts and how to deliver them without causing additional brain damage or triggering immune rejection or inflammatory effects. Additionally, the new cells must also be able to retain the characteristics of a dopamine neuron once implanted in the brain, where they will be exposed to other factors that may influence their further development and survival. In research to date, engineered cells have not survived for long following implantation. They have often turned into different cell types in some cases, they have caused uncontrolled cell growth. Dr. Studers paper, however, suggests that his team has created cells that both survive over the long-term in pre-clinical models, and do not proliferate at an uncontrollable rate. This could have major implications for the use of stem cells in PD therapeutics.

MJFF: Dr. Studer, tell us more about your studys findings.

LS: After many years of trying, we have finally created a method to use human stem cells to generate dopamine nerve cells that maintain their function in pre-clinical models of PD. As Dr. Fiske previously explained, in the past, we were able to make cells in a Petri dish that took on many of the features of dopamine nerve cells. But when these cells were transplanted into pre-clinical models, they either died very quickly, or the cells that did survive tended to overgrow. It was such a mystery: Why did these cells look so good in a Petri dish, but not in a whole organism?Another point of contention has surrounded why the cells didnt take the way we wanted them to: Was it because of the environment in which we were placing the cells, or was it the cells themselves? We have figured this out it was the cells themselves, and we have created a new recipe for making them.Historically, two specific cell pathways were used to make these cells. By delving back into the developmental biology, we figured out that a third pathway was missing from the equation. So we used a small molecule compound, which is a little bit like a pharmaceutical drug, to trigger this third pathway. By doing this, dopamine growth was activated, and at a much higher level of efficiency than we had previously seen. But more important than that, when we injected these cells into pre-clinical models of PD, they survived very well and were functionally active, meaning that the movement deficits in these models were largely corrected. In fact, after four or five months, several movement deficits were completely restored.

MJFF: How are you following up on this discovery in your current work?

LS: Another exciting aspect of this study was that we were able to show that our new technique can quite easily be scaled up in size. While its not yet ready for study in humans, we were able to transplant these cells into a larger size pre-clinical model, and we found that they took to the brain very well, while showing the exact same characteristics as in the smaller models. We havent yet done long-term functional studies in these larger models, so that is next, as we aim to determine if we can restore more complex movements.We are also working with a specialized Good Manufacturing Practices facility to produce a very large number of cells. Over the next few years, we will test these cells in pre-clinical models to determine their efficacy and safety at a greater scale. This will help us to optimize procedures surrounding the production and purification of our cells ahead of a potential clinical study.

MJFF: What might this new study mean for cell replacement therapy moving forward?LS: There are still many hurdles to overcome. In addition to showing that these cells work really well in large pre-clinical models over the long-term, we need to address the potential side effects of cell replacement therapy in human beings. This is a major concern in past studies on PD, grafted cells did survive in human brains. However, in one such study using fetal cell transplants, the graft made the subjects dyskinesia significantly worse than before the trial. Eventually, we will test our cells in a specific dyskinesia-prone model of PD, and hopefully this will prove to reduce dyskinesias, and not worsen them. Again, we have a long way to go stringent clinical studies would have to follow our studies in pre-clinical models. But we are optimistic.

MJFF: Realistically, what kind of timeline are we looking at before your technique makes its way to the clinic?

LS: People always ask how long it will take before cell replacement therapy is a viable option, and weve never had a good answer. But weve also never had a really good way to make the correct cell. Now we believe we do. The question now is more one of engineering than biology, so I think a timeline is more predictable. The big question is, can we better influence the behavior of the cells once we transplant them. Right now, we kind of place them in a black box and hope for the best. Were still perfecting how to better control the cells once theyre transplanted into the brain. Certainly, a lot can still go wrong. But if everything goes right, we believe we could establish these large-scale banks within three to four years. After that, we could begin to start thinking about clinical trials. We have set up a multidisciplinary team here at SKI and several neighboring institutions in New York comprising neurologists, neurosurgeons, and cell engineers to begin to think about the steps we will need to take to move into the clinic. We are confident that this group can go a long way to help us to make the right decisions moving forward.

November 29th 2011

CHELSEA, Mass. Civitas Therapeutics, Inc., a privately-held pharmaceutical company developing transformative therapeutics using the ARCUSTM respiratory delivery platform, announced today the award of a grant from The Michael J. Fox Foundation for Parkinsons Research (MJFF). In addition, Civitas revealed today that the companys lead drug candidate for Parkinsons disease is CVT-301, an inhaled formulation of levodopa (L-dopa). The grant from MJFF will support the clinical development of CVT-301, which has the potential to produce rapid, consistent and durable relief from debilitating motor fluctuations associated with Parkinsons disease.

We are proud to be recognized by The Michael J. Fox Foundation with this award, said Glenn Batchelder, Chief Executive Officer of Civitas. This provides important validation of our vision to improve Parkinsons patients lives with an inhaled L-dopa therapeutic by overcoming the historical challenges in developing a better way to administer L-dopa.

Our Foundation believes the challenges associated with L-dopa delivery represent a critical unmet need in Parkinsons disease, said Todd Sherer, Ph.D., Chief Executive Officer of MJFF. We are optimistic that CVT-301s novel approach could provide an opportunity to improve the standard of care for those living with the disease.

Civitas has conducted a range of preclinical studies demonstrating CVT-301s ability to deliver more rapid and consistent systemic exposure of L-dopa compared to oral administration. CVT-301 was also shown to achieve more rapid, durable motor function restoration in preclinical models of Parkinsons disease in comparative studies with oral L-dopa, providing evidence that CVT-301 has the potential to effectively address motor fluctuations in patients.

Patients with Parkinsons disease face the constant challenge of maintaining adequate therapeutic L-dopa levels which is difficult using the existing oral L-dopa regimens. CVT-301 shows promise as an important new treatment option for patients managing their symptoms, said Matthew Stern, M.D., Director, Parkinsons Disease and Movement Disorders Center, University of Pennsylvania Health System, and a member of the Civitas Scientific Advisory Board.

The grant from MJFF provides support for CVT-301 clinical studies through proof-of-concept which is anticipated to be complete by the end of 2012. Clinical trials of CVT-301 are planned to begin in 2012.

About CVT-301

Civitas lead program, CVT-301, is an inhaled formulation of L-dopa for the treatment of debilitating motor fluctuations associated with Parkinsons disease. For symptomatic relief, oral L-dopa is administered to maintain dopamine levels in the brain above the therapeutic threshold; yet the efficacy of oral L-dopa is significantly compromised by delayed absorption and excessive variability in the circulating plasma drug concentrations inherent to the oral delivery route. CVT-301 is an ARCUSTM therapeutic that incorporates L-dopa and is optimized to deliver a precise dose to the deep lung for rapid, predictable and consistent L-dopa absorption. The ARCUSTM platform is uniquely able to deliver the necessary L-dopa dose with the required precision. CVT-301 is being developed as an adjunct to standard oral L-dopa therapy to enable patients to manage motor fluctuations caused by the inter-dose variability of oral L-dopa. In preclinical models, CVT-301 has demonstrated immediate and consistent increases in L-dopa peak plasma concentration providing rapid, durable symptomatic relief, even when compared to larger doses of oral L-dopa.

About Parkinsons Disease

Over one million people in the US suffer from Parkinsons disease, a neurodegenerative disorder caused by the diminished production of dopamine, a key neurotransmitter, resulting in progressive impairment of motor function including tremors, rigidity and difficulty in moving. Even when treated with the current standard of care the majority of Parkinsons patients still experience motor fluctuations. These motor fluctuations reduce patients ability to lead productive, independent lives and are recognized by patients, care givers and healthcare professionals as one of the most troubling and debilitating issues associated with the disease.

About ARCUSTM Platform

The ARCUSTM inhalation technology delivers a reliable and consistent drug dose with a compact, breath actuated inhaler. The ARCUSTM platform uses a proprietary dry powder and inhaler combination that is unique in its ability to deliver a large, precise dose independent of inspiratory flow rate from a simple, easy-to-use device suitable for convenient self-administration. The platform has successfully delivered more than one million doses to patients incorporating active agents ranging from small molecules to large proteins, and has been scaled up to accommodate a commercial product launch.

About Civitas Therapeutics

Civitas is a privately-held pharmaceutical company focused on developing a robust pipeline of inhaled therapeutics with the clinically proven ARCUSTM dry powder pulmonary delivery platform. The companys lead program is for Parkinsons disease with clinical proof of concept anticipated to be complete in 2012. Additional programs encompass respiratory disease, central nervous system disorders, and infectious disease. Civitas exclusively licensed and purchased the technology and assets underlying the ARCUSTM platform from Alkermes, including a large intellectual property estate, a set of development stage pipeline assets, the specialized pulmonary equipment and the commercial scale GMP manufacturing facility. Civitas investors are Canaan Partners, Fountain Healthcare Partners, Longitude Capital, and Alkermes.

Press Release: February 2012


Orion Pharma has launched a new 175mg dose strength of Stalevo. Stalevo is a form of levodopa. Levodopa is viewed as the gold standard treatment for Parkinsons disease.

Stalevo is now available in seven dose strengths providing a practical option when relatively small adjustments of dose are required in Parkinsons disease patients experiencing wearingoff symptoms. The doses start with a 50mg strength tablet and increase in 25mg increments up to 200mg, which can be utilised as the condition progresses.

Levodopa treatment tends to become less effective over time and patients often experience end-of-dose deterioration; where the duration of benefit after each dose of levodopa becomes progressively shorter. Research has shown that in Parkinsons patients with wearing off, switching from conventional levodopa treatment to Stalevo, can significantly improve activity of their daily living scores 4-6.

A spokesperson for Orion Pharma said: By having a range of seven doses, in 25mg incremental strengths, allows for flexibility as the patient progresses through the disease process. Seven dosage strengths in 25mg can help avoid plasma peaks. By decreasing individual Stalevo strengths by 25mg after the first morning dose can help you to avoid a dramatic swing in levodopa concentration during repeated dosing and maintain a smoother levodopa profile

bottom of page